dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An Eulerian joint velocity-concentration PDF method for solute dispersion in highly heterogeneous porous media
VerfasserIn Daniel W. Meyer, Hamdi A. Tchelepi, Patrick Jenny
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250036590
 
Zusammenfassung
In risk analysis applications involving heterogeneous formations, the knowledge of the solute concentration probability density function (PDF) at different spatial locations and times is crucial. We propose a new joint velocity-concentration PDF method applicable for highly heterogeneous porous media that accounts for advective transport, pore-scale dispersion and molecular diffusion. Unlike in low order approximation (LOA) methods that are valid for low conductivity variances ÏăY 2 and where the one-point velocity PDF is typically assumed to be a Gaussian, the proposed joint PDF method honors the increasingly non-Gaussian velocity one-point PDF and the long-term velocity correlations that were reported in different Monte Carlo (MC) studies for ÏăY 2 > 0.5 [e.g., Salandin, P. and V. Fiorotto, WRR, 1998. 34(5) and Trefry, M.G., F.P. Ruan, and D. McLaughlin, WRR, 2003. 39(3)]. Furthermore, the new joint PDF method does not involve any a-priori assumption about the shape of the resulting marginal concentration PDF. LOA methods that provide information on the concentration mean and variance [Fiori, A. and G. Dagan, Journal of Contaminant Hydrology, 2000. 45(1-2)] on the other hand are typically complemented by assuming that the concentration PDF has a β-PDF shape [Bellin, A. and D. Tonina, Journal of Contaminant Hydrology, 2007. 94(1-2)]. The Eulerian joint velocity-concentration PDF transport equation in our model is numerically solved with a computationally efficient particle method. The suggested joint PDF method is validated by comparison with MC data reported by Caroni and Fiorotto for Péclet numbers ranging from 10 to 104 and ÏăY 2 = 1 and 2 [Caroni, E. and V. Fiorotto, Transport in Porous Media, 2005. 59(1)].