dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Observation and modelling of stable isotopes in precipitation for midlatitude weather systems in Melbourne, Australia
VerfasserIn Vaughan Barras, Ian Simmonds
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250034828
 
Zusammenfassung
The application of stable water isotopes as tracers of moisture throughout the hydrological cycle is often hindered by the relatively coarse temporal and spatial resolution of observational data. Intensive observation periods (IOPs) of isotopes in precipitation have been valuable in this regard enabling the quantification of the effects of vapour recycling, convection, cloud top height and droplet reevaporation (Dansgaard, 1953; Miyake et al., 1968; Gedzelman and Lawrence, 1982; 1990; Pionke and DeWalle, 1992; Risi et al., 2008; 2009) and have been used as a basis to develop isotope models of varying complexity (Lee and Fung, 2008; Bony et al., 2008). This study took a unified approach combining observation and modelling of stable isotopes in precipitation in an investigation of three key circulation types that typically bring rainfall to southeastern Australia. The observational component of this study involved the establishment of the Melbourne University Network of Isotopes in Precipitation (MUNIP). MUNIP was devised to sample rainwater simultaneously at a number of collection sites across greater Melbourne to record the spatial and temporal isotopic variability of precipitation during the passage of particular events. Samples were collected at half-hourly intervals for three specific rain events referred to as (1) mixed-frontal, (2) convective, and (3) stratiform. It was found that the isotopic content for each event varied over both high and low frequencies due to influences from local changes in rain intensity and large scale rainout respectively. Of particular note was a positive relationship between deuterium excess and rainfall amount under convective conditions. This association was less well defined for stratiform rainfall. As a supplement to the data coverage of the observations, the events were simulated using a version of NCAR CAM3 running with an isotope hydrology scheme. This was done by periodically nudging the model dynamics with data from the NCEP Reanalysis (Noone, 2006). Results from the simulations showed that the model represented well the large scale evolution of vapour profiles of deuterium excess and 18O for the mixed-frontal and stratiform events. Reconstruction of air mass trajectories provided further detail of the evolution and structure of the vapour profiles revealing a convergence of air masses from different source regions for the mixed-frontal event. By combining observations and modelling in this way, much detail of the structure and isotope moisture history of the observed events was provided that would be unavailable from the sampling of precipitation alone. References Bony, S., C. Risi, and F. Vimeux (2008), Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305, doi:10.1029/2008JD009942. Dansgaard, W. (1953), The abundance of 18O in atmospheric water and water vapor. Tellus, 5, 461-469. Gedzelman, S. D., and J. R. Lawrence (1982), The isotopic composition of cyclonic precipitation. J. App. Met., 21, 1385-1404. Gedzelman, S. D., and J. R. Lawrence (1990), The isotopic composition of precipitation from two extratropical cyclones, Mon. Weather Rev., 118 , 495-509. Lee, J., and I. Fung (2008), ‘Amount effect’ of water isotopes and quantitative analysis of post-condensation processes, Hydrol. Process., 22, 1-8. Miyake, Y., O. Matsubaya, and C. Nishihara (1968), An isotopic study on meteoric precipitation, Pap. Meteorol. Geophys., 19, 243-266. Noone, D. (2006), Isotopic composition of water vapor modeled by constraining global climate simulations with reanalyses, in Research activities in atmospheric and oceanic modeling, J. Côté (ed.), Report No. 36, WMO/TD-No. 1347, p. 2.37-2.38. Pionke, H. B., and D. R. DeWalle (1992), Intra- and inter-storm 18O trends for selected rainstorms in Pennsylvania. J. Hydrol., 138, 131-143. Risi, C., S. Bony, and F. Vimeux (2008), Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943. Risi, C., S. Bony, F. Vimeux, M. Chong, and L. Descroix (2009), Evolution of the water stable isotopic composition of the rain sampled along Sahelian squall lines, Q. J. Roy. Meteor. Soc., doi:10.1002/qj.485, (in press).