dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Detrital geochronology of unroofing magmatic complexes
VerfasserIn Marco Giovanni Malusà, Igor Maria Villa, Giovanni Vezzoli, Eduardo Garzanti
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250032424
 
Zusammenfassung
Tectonic reconstructions performed in recent years are increasingly based on petrographic (Dickinson & Suczek, 1979; Garzanti et al., 2007) and geochronological (Brandon et al., 1998; DeCelles et al., 2004) analyses of detrital systems. Detrital age patterns are traditionally interpreted as a result of cooling induced by exhumation (Jäger, 1967; Dodson, 1973). Such an approach can lead to infer extremely high erosion rates (Giger & Hurford 1989) that conflict with compelling geological evidence (Garzanti & Malusà, 2008). This indicates that interpretations solely based on exhumational cooling may not have general validity (Villa, 2006). Here we propose a new detrital geochronology model that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U-Pb on zircon to fission tracks on apatite. This model, specifically designed for unroofing magmatic complexes, predicts both stationary and moving mineral-age peaks. Because its base is the ordinary interaction between endogenic and exogenic processes, it is applicable to any geological setting. It was tested on the extremely well-studied Bregaglia-Bergell pluton in the Alps, and on the sedimentary succession derived from its erosion. The consistency between predicted and observed age patterns validates the model. Our results demonstrate that volcanoes were active on top of the growing Oligocene Alps, and resolve a long-standing paradox in quantitative erosion-sedimentation modelling, the scarcity of sediment during apparently fast erosion. Dickinson, W. R. & Suczek, C. A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63, 2164–2172 (1979). Garzanti, E., Doglioni, C., Vezzoli. G. & Andò, S. Orogenic belts and orogenic sediment provenance. J. Geol. 115, 315-334 (2007). Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull. 110, 985-1009 (1998). DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., Garzanti, E. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313-330 (2004). Jäger, E. in Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen, Beitr. Geol. Karte Schweiz NF 134 (eds. Jäger, E., Niggli, E. & Wenk, E.) 28-31 (Bern, Kümmerly & Frey, 1967). Dodson, M. H. Closure temperature in cooling geochronological and petrological systems. Contr. Miner. Petrol. 40, 259-274 (1973). Giger, M. & Hurford, A. J. Tertiary intrusives of the Central Alps: their Tertiary uplift, erosion, redeposition and burial in the south-alpine foreland. Eclogae geol. Helv. 82, 857-866 (1989). Garzanti, E. & Malusà, M. G. The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth Planet. Sci. Lett. 268, 487-500 (2008). Villa, I. M. From nanometer to megameter: Isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87, 155-173 (2006).