dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime
VerfasserIn Paul Williams, Peter Read, Thomas Haine
Konferenz EGU General Assembly 2010
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 12 (2010)
Datensatznummer 250031943
 
Zusammenfassung
We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia-gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension, and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia-gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds. This is an unexpected and intriguing result that could not have been predicted from the existing literature. It is also potentially useful, for example by permitting the use of a low-order quasi-geostrophic model to easily map out the bifurcation structure — which would be very difficult with a primitive equations model — followed by the use of a primitive equations model for more quantitative agreement in specific cases. Reference Williams, PD, PL Read and TWN Haine (2010) Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime. Journal of Fluid Mechanics, in press.