dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Anion-catalyzed Disprotionation of Nitrogen Dioxide on Microdroplets Surfaces
VerfasserIn M. R. Hoffmann, S. Enami, A. J. Colussi
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250029063
 
Zusammenfassung
The reactive dissolution of NO2(g) on cloud and fog droplets and the conversion to HONO(g) : 2 NO2(g) + H2O(l) = HONO(g) + NO3-(aq) + H+(aq), is a viable transformation process. Recently, unexpectedly large HONO concentrations were observed that may account for ~ 50 % of OH radical production at noon and entail a diurnal source ~ 64 times stronger than the reaction above at night (Kleffmann, Chem. Phys. Chem. 2007, 8, 1137). Reported NO2(g) uptake coefficients in water are at odds in the range from γg 10-7 up to 10-3. Here we show that the probability of NO2 uptake on aqueous microdroplets depends on their ionic composition at the air/water interface, reaching peak values at ion concentrations in the low mM range, using a novel application of electrospray mass spectrometry. We found that the uptake rates under these conditions are three orders of magnitude larger than in pure water. Uptake appears to be controlled by the capture of NO2 into radical anion intermediates on droplet surfaces, and is modulated by overall anion concentration. These results would resolve the outstanding discrepancies between previous NO2 uptake measurements in water vs. NaCl-seeded clouds, and lead to half-lives for the reactive dissolution of NO2 in typical clouds and fogs that are sufficiently short to impact diurnal -‹ OH/HO2-‹ budgets.