dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Structural relaxation and colour in the spinel-magnesiochromite (MgAl2O4-MgCr2O4) and gahnite-zincochromite (ZnAl2O4-ZnCr2O4) solid solution series
VerfasserIn Ulf Hålenius, G. B. Andreozzi, H. Skogby
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250028026
 
Zusammenfassung
Recent studies on binary mineral solid solution series utilising synchrotron based x-ray absorption spectroscopies have indicated strong structural relaxation. For instance, it has been suggested that the real Cr-O bond distances remain nearly constant (relaxation parameter (ɛ) of 0.85, where ɛ=1 equals full relaxation) over the entire compositional range of the MgAl2O4-MgCr2O4 series (Juhin et al. 2007). In the present study we have measured room temperature optical absorption spectra of synthetic single crystals of the ZnAl2-2xCr2xO4 (0.03-‰¤x-‰¤1) and MgAl2-2xCr2xO4(0.02-‰¤x-‰¤1) series with the aim to explore the real architecture of the structure and in particular the Cr-O distance as function of composition. Our crystals were synthesized by means of flux-growth methods under atmospheric pressure and temperature profiles resulting in an estimated cation ordering temperature of ca 850-ˆ˜C. Crystals close to the spinel (sensu stricto) and gahnite end-member compositions were faintly red in colour. With increasing Cr-content the crystals become more intensely red-coloured and at the higher Cr-contents there is a distinct shift towards a dark greenish colouration. These colour changes are reflected in the measured optical spectra by the position and intensity of the two spin-allowed electronic d-d transitions in octahedrally coordinated Cr3+ at ca 18000 (4A2g -4T2g (4F) transition) and 25000 cm-1(4A2g -4T1g (4F) transition). The energy of the first transition (ν1-band) is ca 1200 cm-1 lower in magnesiochromite than in weakly Cr-doped spinel (x=0.02) and ca 1400 cm-1 lower in zincochromite than in gahnite with the lowest Cr-content (x=0.03). Concomitantly the energy of the second transition (ν2-band) decreases with increasing Cr-content in both series by ca. 1800 cm-1. From the position of the ν1-band, a decrease in crystal field splitting, 10Dq, for six-coordinated Cr3+ with increasing Cr-content in the MgAl2-2xCr2xO4 and ZnAl2-2xCr2xO4 series of 6.5 and 7.5 %, respectively, is determined. Based on a Cr-O bond distance for the CrO6 polyhedron in magnesiochromite and zincochromite of 1.995 and 1.991 Å respectively (O’Neill and Dollase, 1994) and applying the ligand field relationship 10Dq-‰ˆC-‹ R-5 (R equals the M-O distance of the MO6-polyhedron), Cr-O bond distances in gahnite and spinel with Cr-contents at trace levels are determined to 1.959 and 1.969 Å, respectively. These M-O bond distances are considerably longer than the M-O distances determined for end member gahnite and spinel by XRD-methods (1.9137 and 1.9280 Å, respectively; O’Neill and Dollase, 1994) and shows that there is considerable structural relaxation of M-O bonds in the two present spinel series. The relaxation parameter, ɛ, determined from the optical absorption spectra is 0.59 and 0.63 for the ZnAl2-2xCr2xO4 and MgAl2-2xCr2xO4 and series, respectively. These values are lower than those suggested from X-ray absorption spectroscopy (Juhin et al. 2007), which may be explained by second nearest neighbour interactions. In contrast to what may be expected, the interelectronic repulsion parameter, B, for V ICr3+ decreases with increasing Cr-content and apparent Cr-O bond length in both of the present spinel series . This indicates that interactions between Cr-atoms in neighbouring octahedra become important at increasing Cr-content and result in more covalent Cr-O bonds. This in turn suppresses the energy of 4A2g -4T2g (4F) transition (and calculated 10Dq-values) in octahedrally coordinated Cr3+. Consequently, the values of structural relaxation parameters determined from the optical absorption spectra must be regarded as minimum numbers. Literature Juhin, A., Calas, G., Cabaret, D. and Galoisy, L. (2007): Structural relaxation around Cr3+ in MgAl2O4. Physical Review, B76, 054105. O’Neill, H.St.C. and Dollase, W.A. (1994): Crystal structures and cation distributions in simple spinels from powder XRD structure refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of cation distribution in ZnAl2O4. Physics and Chemistry of Minerals, 20, 541-555.