dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Semi-Lagrangian Methods in Air Pollution Models.
VerfasserIn A. Buus Hansen, E. Kaas, J. H. Christensen, J. Brandt
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250025285
 
Zusammenfassung
Various semi-Lagrangian methods are tested for use in air pollution model- ing. The aim is to find a method fulfilling as many of the desirable properties by Rasch and Williamson (1990) and Machenhauer et al. (2008) as possi- ble. The focus is on accuracy, local mass conservation and computational efficiency. The methods tested are, first, classical semi-Lagrangian cubic interpola- tion, see e.g. Durran (1999), second, semi-Lagrangian cubic cascade inter- polation, by Nair et al. (2002), third, semi-Lagrangian cubic interpolation with the modified interpolation weights, by Kaas (2008), and last, semi- Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2008). Semi-Lagrangian (sL) interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass con- serving monotonic filter imposes monotonicity. All schemes are tested with advection alone or with advection and chem- istry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme presently used at the National Environmental Re- search Institute (NERI) in Denmark. The test cases are based either on the traditional slotted cylinder, see e.g. Zerroukat et al. (2002), or the rotating cone, see e.g. Molenkamp (1968) and Crowley (1968), where the schemes’ ability to model both steep gradi- ents and slopes are challenged. The tests showed that the locally mass conserving monotonic filter im- proved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the currently used ASD scheme used in DEHM, see e.g. Frohn et al. (2002). The present study is a part of the research of the Center for Energy, Envi- ronment and Health, financed by The Danish Strategic Research Program on Sustainable Energy.