dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Hydrogen in biogas and its impact to the atmosphere
VerfasserIn S. Walter, S. Laukenmann, A. J. M. Stams, T. Röckmann
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250025201
 
Zusammenfassung
The shortage and increase in cost of fossil fuels leads to an increased interest in renewable energy sources. One important renewable energy source is biogas, produced by fermentation of organic material. During the last ten years the number of biogas plants has continuously increased and it is expected to increase further. Biogas is a mixture of mainly methane and carbon dioxide but contains also molecular hydrogen (H2). The hydrogen content of biogas depends on the used substrate and the production process. Hydrogen is also produced by conversion of biogas. Although hydrogen is considered as one of the most important future energy carriers, little is known about the global biogeochemical cycle of this trace gas (Rhee et al. 2006) and its impact to the atmosphere is discussed controversially. In order to assess the impact of an expected increasing H2 concentration to the atmosphere a fundamental understanding of the sources and sinks of the global H2 cycle is indispensable (Tromp et al. 2003, Warwick et al. 2004). Due to the large mass difference between hydrogen and deuterium the isotope composition is one possibility to obtain further information about the sources and sinks. Here we will present first results of the isotope composition of hydrogen in biogas. Literature Rhee, T.S., C.A.M. Brenninkmeijer, and T. Röckmann; The overwhelming role of soils in the global atmospheric hydrogen cycle, Atmos. Chem. Phys., 6, 1611-1625, 2006. Tromp, T.K., Shi, R.-L., Allen, M., Eiler, J.M., and Y. L. Yung1; Potential Environmental Impact of a Hydrogen Economy on the Stratosphere, Science, 300, 1740-1742, 2003. Warwick, N.J., Bekki, S., Nisbet, E.G., and J.A. Pyle; Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model; Geo.Res.Lett., 31, L05107, doi:10.1029/2003GL019224, 2004.