dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Monitoring the soil degradation by Metastatistical Analysis
VerfasserIn K. Oleschko, C. Gaona, A. Tarquis
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250024793
 
Zusammenfassung
The effectiveness of fractal toolbox to capture the critical behavior of soil structural patterns during the chemical and physical degradation was documented by our numerous experiments (Oleschko et al., 2008 a; 2008 b). The spatio-temporal dynamics of these patterns was measured and mapped with high precision in terms of fractal descriptors. All tested fractal techniques were able to detect the statistically significant differences in structure between the perfect spongy and massive patterns of uncultivated and sodium-saline agricultural soils, respectively. For instance, the Hurst exponent, extracted from the Chernozem´ micromorphological images and from the time series of its physical and mechanical properties measured in situ, detected the roughness decrease (and therefore the increase in H - from 0.17 to 0.30 for images) derived from the loss of original structure complexity. The combined use of different fractal descriptors brings statistical precision into the quantification of natural system degradation and provides a means for objective soil structure comparison (Oleschko et al., 2000). The ability of fractal parameters to capture critical behavior and phase transition was documented for different contrasting situations, including from Andosols deforestation and erosion, to Vertisols high fructuring and consolidation. The Hurst exponent is used to measure the type of persistence and degree of complexity of structure dynamics. We conclude that there is an urgent need to select and adopt a standardized toolbox for fractal analysis and complexity measures in Earth Sciences. We propose to use the second-order (meta-) statistics as subtle measures of complexity (Atmanspacher et al., 1997). The high degree of correlation was documented between the fractal and high-order statistical descriptors (four central moments of stochastic variable distribution) used to the system heterogeneity and variability analysis. We proposed to call this combined fractal/statistical toolbox Metastatistical Analysis and recommend it to the projects directed to soil degradation monitoring. References: 1. Oleschko, K., B.S. Figueroa, M.E. Miranda, M.A. Vuelvas and E.R. Solleiro, Soil & Till. Res. 55, 43 (2000). 2. Oleschko, K., Korvin, G., Figueroa S. B., Vuelvas, M.A., Balankin, A., Flores L., Carreño, D. Fractal radar scattering from soil. Physical Review E.67, 041403, 2003. 3. Zamora-Castro S., Oleschko, K. Flores, L., Ventura, E. Jr., Parrot, J.-F., 2008. Fractal mapping of pore and solids attributes. Vadose Zone Journal, v. 7, Issue2: 473-492. 4. Oleschko, K., Korvin, G., Muñoz, A., Velásquez, J., Miranda, M.E., Carreon, D., Flores, L., Martínez, M., Velásquez-Valle, M., Brambilla, F., Parrot, J.-F. Ronquillo, G., 2008. Fractal mapping of soil moisture content from remote sensed multi-scale data. Nonlinear Proceses in Geophysics Journal, 15: 711-725. 5. Atmanspacher, H., Räth, Ch., Wiedenmann, G., 1997. Statistics and meta-statistics in the concept of complexity. Physica A, 234: 819-829.