dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modeling retardation effects by barium and strontium solid solutions on radium cations in the near field of radioactive waste repository
VerfasserIn H. Shao, G. Kosakowski, D. A. Kulik, O. Kolditz
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250023520
 
Zusammenfassung
In the near field of a radioactive waste repository, bentonite is often used as a buffer material to prevent the migration of hazardous radionuclides into the biosphere. Traditionally the retardation mechanisms are simplified into a linear isotherm concept. The corresponding KD value is thereafter used for safety assessment purposes. Often, due to the lack of experimental data, the retardation based on the formation of solid solutions is ignored and only cation exchange and surface complexation processes are considered in evaluating KDs. In this contribution, we use the newly coupled code GeoSys-GEM to simulate the reactive transport of radium in a bentonite column. In a first step, a chemical model was set up which contained non-ideal radium, barium, and strontium sulfate and carbonate solid solutions. Our reactive transport simulations suggest that the formation of such solid solutions strongly contributes to the retardation of radium. The aqueous Ra2+ concentration will be lower by 3 ~ 4 orders of magnitudes in the presence of sulfate solid solutions. However, its fixation capacity is highly influenced by the sulfate inventory available in the medium. In a second step, the chemical model was further extended to include ion exchange effects, with the clay mineral montmorillonite acting as an ion-exchanger. A sensitivity analysis was conducted to find out to what extent the mechanisms and compounds influence the retardation of radium. With this model, we are able to predict the transport of radionuclides in a more realistic way and reduce the conservatism of the simplified models (linear isotherms) used for performance assessment.