dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Structures in an anhydrite layer embedded in halite matrix: Results from thermomechanical experiments under bulk plain strain
VerfasserIn M. Mertineit, G. Zulauf, M. Peinl, F. Zanella, O. Bornemann
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250023440
 
Zusammenfassung
Anhydrite layers from Gorleben salt dome, embedded in a halite matrix from Asse salt dome, both northern Germany, were deformed under bulk plain strain using a thermomechenical apparatus (Zulauf et al., 2007, 2009). The initial layer thickness Hi ranges from 0.85 to 2.5 mm. Further deformation conditions were as follows: T =345˚ C, σmax=4.59 MPa, ezmax=-40%, ė=2*10-7s-1. During the deformation process, load cells record the stress along Y and Z. The displaced material could escape in X. The deformed samples were scanned using a computer tomograph at the Universitätsklinikum Frankfurt/Main. The CT data allow the generation of 3D-modells using the software Smoooth. We deformed six samples with the layer (S) perpendicular to the X-axis and four samples with the layer perpendicular to the Z-axis. Depending on the orientation of the layer (S-Š¥X or S-Š¥Z), the expected structures should be folds or boudins, respectively, the geometry of which should strongly depend on Hi. In cases were the layer was orientated parallel to the shortening axis (S-Š¥X), the anhydrite layer shows Mohr-Coulomb fractures. The fracture walls were thrust on top of each other. The space between hanging and foot wall is filled with salt. The angle between the fractures and the YZ-plain ranges from 10˚ to 25˚ , rarely up to 70˚ , dependent on the finite strain. In thin layers (Hi=0.85 and 1 mm) rarely non-cylindrical folds developed. In both cases (S-Š¥X and S-Š¥Z) the layer thickness did not significantly change during deformation. In cases were the layer was orientated perpendicular to the shortening axis (S-Š¥Z) boudins developed by extensional fracture. The number of boudins and their size depend strongly on the initial layer thickness Hi. With increasing layer thickness Hi the width of boudins Wa increases linearly. Wa = -0.2 + 1.4 * Hi (1) This relation between Hi and Wa is further compatible with equation (16.4) of Price and Cosgrove (1990) which also considers rheological parameters. Moreover experiments carried out under bulk constrictional strain (Zulauf et al., 2007, 2009) show a similar dependency of the initial layer thickness and boudin width. For microstructual investigations of the halite matrix, thin sections (XZ- and YZ-sections) were prepared and etched following the method of Urai et al. (1987). First microfabric data show that halite behaves viscous whereas anhydrite deforms by fracturing or rare folding under the chosen deformation conditions. Halite deforms by climb-controlled dislocation creep with strain hardening (Carter et al., 1993). Anhydrite, on the other hand, was deformed in the brittle-plastic regime, characterized by twinning, kinking and fracturing. The subgrain size of halite has been used to estimate the differential stress (Schléder & Urai, 2005, 2007), that was compared with the stress recorded by the load cells. The subgrain size of deformed halite varies between 0.04 and 0.07mm, resulting in differential stresses between 3.3 +1.5/-0.8 MPa (S-Š¥X) and 4.2 +3.0/-1.2 MPa (S-Š¥Z), although the conditions for piezometry are not completely fulfilled (e.g. lack of steady state during deformation in some samples). These stress values in the matrix fit with the stress values recorded during deformation. Close to rigid anhydrite the subgrain size decreases to values of 0.02 - 0.03 mm, reflecting peak stress up to 6.7 +3.7/-0.7 MPa. We do not know the reasons why folding of the anhydrite layer is largely lacking, although the viscosity contrast between halite and anhydrite should be appropriate for folding. Possible reasons are the lack in confining pressure or mechanical anisotropies in the undeformed anhydrite. Further investigations will focus on the texture of halite and on microfabrics of the anhydrite. References Carter, N.L., Horseman, S.T., Russel, J.E. & Handin, J (1993): Rheology of rocksalt, J. Struct. Geol., Vol. 15, No. 9/10, p. 1257-1271 Price, N.J.; Cosgrove, J.W. (1990): Analysis of Geological Structures, by Neville J. Price and John W. Cosgrove, pp. 516., Cambridge, UK: Cambridge University Press, August 1990 Schléder, Z. & Urai, J. L. (2005): Microstructual evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands, Int. J. Earth Sci., 94, p. 941-955 Schléder, Z. & Urai, J. L. (2007): Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran), J. Struct. Geol., 29, p. 241-255 Urai, J. L., Spiers, C. J., Peach, C. J., Franssen, R. C. M. W. & Liezenberg, J. L. (1987): Deformation mechanisms operating in naturally deformed halite rocks as deducted from microstructural investigations, Geol. Mijnbouw, 66, p. 165-176 Zulauf, G., Zulauf, J. & Bornemann, O. (2007): Deformation of a halite-anhydrite sequence under bulk constriction: Preliminary results from thermomechanical experiments, in: Wallner, M, Lux, K.-H., Minkley, W. & Reginal Hardy jr., H. (Eds.). The mechanical behavior of salt-Understanding of THMC processes in salt, Taylor & Francies, London: 63-68 Zulauf, G., Zulauf, J., Bornemann, O., Kihm, N., Peinl, M., Zanella, F. (2009): Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction: 1. Geometric and kinematic aspects, J. Struct. Geol. (submitted)