dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Climate change impacts on maritime mountain snowpack in the Oregon Cascades
VerfasserIn E. A. Sproles, A. W. Nolin, K. Rittger, T. H. Painter
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 17, no. 7 ; Nr. 17, no. 7 (2013-07-09), S.2581-2597
Datensatznummer 250018925
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-17-2581-2013.pdf
 
Zusammenfassung
This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2) in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with SnowModel, a spatially-distributed, process-based model (Liston and Elder, 2006b). Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model then evaluated the inter- and intra-year sensitivity of basin wide snowpack to projected temperature increases (2 °C) and variability in precipitation (±10%). Results show that a 2 °C increase in temperature would shift the average date of peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 2000 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. The results of this study are regionally relevant as melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. While this research focused on one watershed, it serves as a case study examining the effects of climate change on maritime snow, which comprises 10% of the Earth's seasonal snow cover.
 
Teil von