dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions
VerfasserIn P. Pokhrel, D. E. Robertson, Q. J. Wang
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 17, no. 2 ; Nr. 17, no. 2 (2013-02-22), S.795-804
Datensatznummer 250018803
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-17-795-2013.pdf
 
Zusammenfassung
Hydrologic model predictions are often biased and subject to heteroscedastic errors originating from various sources including data, model structure and parameter calibration. Statistical post-processors are applied to reduce such errors and quantify uncertainty in the predictions. In this study, we investigate the use of a statistical post-processor based on the Bayesian joint probability (BJP) modelling approach to reduce errors and quantify uncertainty in streamflow predictions generated from a monthly water balance model. The BJP post-processor reduces errors through elimination of systematic bias and through transient errors updating. It uses a parametric transformation to normalize data and stabilize variance and allows for parameter uncertainty in the post-processor. We apply the BJP post-processor to 18 catchments located in eastern Australia and demonstrate its effectiveness in reducing prediction errors and quantifying prediction uncertainty.
 
Teil von