dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Multi-variate flood damage assessment: a tree-based data-mining approach
VerfasserIn B. Merz, H. Kreibich, U. Lall
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 13, no. 1 ; Nr. 13, no. 1 (2013-01-11), S.53-64
Datensatznummer 250017530
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-13-53-2013.pdf
 
Zusammenfassung
The usual approach for flood damage assessment consists of stage-damage functions which relate the relative or absolute damage for a certain class of objects to the inundation depth. Other characteristics of the flooding situation and of the flooded object are rarely taken into account, although flood damage is influenced by a variety of factors. We apply a group of data-mining techniques, known as tree-structured models, to flood damage assessment. A very comprehensive data set of more than 1000 records of direct building damage of private households in Germany is used. Each record contains details about a large variety of potential damage-influencing characteristics, such as hydrological and hydraulic aspects of the flooding situation, early warning and emergency measures undertaken, state of precaution of the household, building characteristics and socio-economic status of the household. Regression trees and bagging decision trees are used to select the more important damage-influencing variables and to derive multi-variate flood damage models. It is shown that these models outperform existing models, and that tree-structured models are a promising alternative to traditional damage models.
 
Teil von