dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Equatorial plasma bubbles and L-band scintillations in Africa during solar minimum
VerfasserIn V. V. Paznukhov, C. S. Carrano, P. H. Doherty, K. M. Groves, R. G. Caton, C. E. Valladares, G. K. Seemala, C. T. Bridgwood, J. Adeniyi, L. L. N. Amaeshi, B. Damtie, F. D'Ujanga Mutonyi, J. O. H. Ndeda, P. Baki, O. K. Obrou, B. Okere, G. M. Tsidu
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 30, no. 4 ; Nr. 30, no. 4 (2012-04-16), S.675-682
Datensatznummer 250017211
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-30-675-2012.pdf
 
Zusammenfassung
We report on the longitudinal, local time and seasonal occurrence of equatorial plasma bubbles (EPBs) and L band (GPS) scintillations over equatorial Africa. The measurements were made in 2010, as a first step toward establishing the climatology of ionospheric irregularities over Africa. The scintillation intensity is obtained by measuring the standard deviation of normalized GPS signal power. The EPBs are detected using an automated technique, where spectral analysis is used to extract and identify EPB events from the GPS TEC measurements.

Overall, the observed seasonal climatology of the EPBs as well as GPS scintillations in equatorial Africa is adequately explained by geometric arguments, i.e., by the alignment of the solar terminator and local geomagnetic field, or STBA hypothesis (Tsunoda, 1985, 2010a). While plasma bubbles and scintillations are primarily observed during equinoctial periods, there are longitudinal differences in their seasonal occurrence statistics. The Atlantic sector has the most intense, longest lasting, and highest scintillation occurrence rate in-season. There is also a pronounced increase in the EPB occurrence rate during the June solstice moving west to east. In Africa, the seasonal occurrence shifts towards boreal summer solstice, with fewer occurrences and shorter durations in equinox seasons. Our results also suggest that the occurrence of plasma bubbles and GPS scintillations over Africa are well correlated, with scintillation intensity depending on depletion depth. A question remains about the possible physical mechanisms responsible for the difference in the occurrence phenomenology of EPBs and GPS scintillations between different regions in equatorial Africa.
 
Teil von