dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modelling solar cycle length based on Poincaré maps for Lorenz-type equations
VerfasserIn H. Lundstedt, T. Persson
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 28, no. 4 ; Nr. 28, no. 4 (2010-04-21), S.993-1002
Datensatznummer 250016821
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-28-993-2010.pdf
 
Zusammenfassung
Two systems of Lorenz-type equations modelling solar magnetic activity are studied: Firstly a low order dynamic system in which the toroidal and poloidal fields are represented by x- and y-coordinates respectively, and the hydrodynamical information is given by the z coordinate. Secondly a complex generalization of the three ordinary differential equations studied by Lorenz. By studying the Poincaré map we give numerical evidence that the flow has an attractor with fractal structure. The period is defined as the time needed for a point on a hyperplane to return to the hyperplane again. The periods are distributed in an interval. For large values of the Dynamo number there is a long tail toward long periods and other interesting comet-like features. These general relations found for periods can further be physically interpreted with improved helioseismic estimates of the parameters used by the dynamical systems. Solar Dynamic Observatory is expected to offer such improved measurements.
 
Teil von