dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Upper-mesospheric temperatures measured during intense substorms in the declining phase of the January 2005 solar proton events
VerfasserIn H. Nesse Tyssøy, D. Heinrich, J. Stadsnes, M. Sørbø, U.-P. Hoppe, D. S. Evans, B. P. Williams, F. Honary
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 26, no. 9 ; Nr. 26, no. 9 (2008-09-01), S.2515-2529
Datensatznummer 250016207
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-26-2515-2008.pdf
 
Zusammenfassung
Temperature measurements from the ALOMAR Weber Na lidar together with cosmic radio noise absorption measurements from IRIS and particle measurements from NOAA 15, 16 and 17 are used to study effects of geomagnetic activity on the polar winter upper-mesospheric temperature. On 21–22 January 2005 we have 14 h of continuous temperature measurement with the Na lidar coinciding with strong geomagnetic activity in the declining phase of one of the hardest and most energetic Solar Proton Event (SPE) of solar cycle 23. According to measurements by the imaging riometer IRIS in northern Finland, the temperature measurements coincide with two periods of increased cosmic radio noise absorption. Particle measurements from the three satellites, NOAA 15, 16 and 17 that pass through and near our region of interest confirm that the absorption events are probably due to particle precipitation and not due to changes in e.g. the electron recombination coefficient.

The measured temperature variation at 85 and 90 km is dominated by a 7.6-h wave with downward phase propagation and a vertical wavelength of approximately 10 km. Assuming that the wave is due to a lower altitude source independent of the particle precipitation, we do not find any temperature modification that seems to be related to the absorption events. The average temperature is larger than expected above 90 km based on MSIS and the monthly mean from falling spheres, which could be due to particle precipitation and Joule heating prior to our measurement period. There is also a possibility that the identified wave phenomenon is an effect of the geomagnetic activity itself. Earlier studies have reported of similar wavelike structures in wind observations made by the EISCAT VHF radar during SPEs, and found it conceivable that the wave could be excited by the effect of energetic particles precipitating into the mesosphere.
 
Teil von