dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Naturally enhanced ion-acoustic lines at high altitudes
VerfasserIn Y. Ogawa, S. C. Buchert, R. Fujii, S. Nozawa, F. Forme
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 24, no. 12 ; Nr. 24, no. 12 (2006-12-21), S.3351-3364
Datensatznummer 250015709
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-24-3351-2006.pdf
 
Zusammenfassung
Naturally enhanced ion-acoustic lines (NEIALs) between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT) Svalbard radar (ESR) at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound) speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.
 
Teil von