dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A numerical study of cell merger over Cuba – Part I: implementation of the ARPS/MM5 models
VerfasserIn D. Pozo, I. Borrajero, J. C. Marín, G. B. Raga
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 24, no. 11 ; Nr. 24, no. 11 (2006-11-21), S.2781-2792
Datensatznummer 250015665
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-24-2781-2006.pdf
 
Zusammenfassung
On 21 July 2001 a number of severe storms developed over the region of Camaguey, Cuba, which were observed by radar. A numerical simulation was performed in order to realistically reproduce the development of the storms observed that day. The mesoscale model MM5 was used to determine the initial, boundary and update conditions for the storm-scale simulation with the model ARPS. Changes to the source code of ARPS were made in order to assimilate the output from the MM5 as input data and a new land-use file with a 1-km horizontal resolution for the Cuban territory was created.

A case representing the merger between cells at different stages of development was correctly reproduced by the simulation and is in good agreement with radar observations. The state of development of each cell, the time when the merger occurred, starting from the formation of clouds, the propagation motion of the cells and the increase in precipitation, due to the growth of the area after the merger, were correctly reproduced. Simulated clouds matched the main characteristics of the observed radar echoes, though in some cases, reflectivity tops and horizontal areas were overestimated. Maximum reflectivity values and the heights where these maximum values were located were in good agreement with radar data, particularly when the model reflectivity was calculated without including the snow. The MM5/ARPS configuration introduced in this study, improved sensibly the ability to simulate convective systems, thereby enhancing the local forecasting of convection in the region.
 
Teil von