|
Titel |
Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity |
VerfasserIn |
J. D. Nichols, S. W. H. Cowley |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
0992-7689
|
Digitales Dokument |
URL |
Erschienen |
In: Annales Geophysicae ; 22, no. 5 ; Nr. 22, no. 5 (2004-04-08), S.1799-1827 |
Datensatznummer |
250014878
|
Publikation (Nr.) |
copernicus.org/angeo-22-1799-2004.pdf |
|
|
|
Zusammenfassung |
We consider the effect of precipitation-induced enhancement of the Jovian ionospheric
Pedersen conductivity on the magnetosphere-ionosphere coupling current system which is
associated with the breakdown of the corotation of iogenic plasma in Jupiter's middle magnetosphere.
In previous studies the Pedersen conductivity has been taken to be simply a constant, while it is
expected to be significantly enhanced in the regions of upward-directed auroral field-aligned
current, implying downward precipitating electrons. We develop an empirical model of the
modulation of the Pedersen conductivity with field-aligned current density based on the modelling
results of Millward et al. and compute the currents flowing in the system
with the conductivity self-consistently dependent on the auroral precipitation. In addition, we
consider two simplified models of the conductivity which provide an insight into the behaviour of
the solutions. We compare the results to those obtained when the conductivity is taken to be
constant, and find that the empirical conductivity model helps resolve some outstanding
discrepancies between theory and observation of the plasma angular velocity and current system.
Specifically, we find that the field-aligned current is concentrated in a peak of magnitude ~0.25µAm-2
in the inner region of the middle magnetosphere at ~20 RJ, rather than being more uniformly
distributed as found with constant conductivity models. This peak maps to ~17° in the ionosphere,
and is consistent with the position of the main oval auroras. The energy flux associated with the
field-aligned current is ~10mWm-2 (corresponding to a UV luminosity of ~100kR), in a region
~0.6° in width, and the Pedersen conductivity is elevated from a background of ~0.05mho to
~0.7mho. Correspondingly, the total equatorial radial current increases greatly in the region of
peak field-aligned current, and plateaus with increasing distance thereafter. This form is consistent
with the observed profile of the current derived from Galileo magnetic field data. In addition, we
find that the solutions using the empirical conductivity model produce an angular velocity profile
which maintains the plasma near to rigid corotation out to much further distances than the constant
conductivity model would suggest. Again, this is consistent with observations. Our
results
therefore suggest that, while the constant conductivity solutions provide an important indication
that the main oval is indeed a result of the breakdown of the corotation of iogenic plasma, they do not
explain the details of the observations. In order to resolve some of these discrepancies, one must
take into account the elevation of the Pedersen conductivity as a result of auroral electron
precipitation.
Key words. Magnetospheric physics (current systems,
magnetosphere-ionosphere interactions, planetary magnetospheres)70d |
|
|
Teil von |
|
|
|
|
|
|