dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Chaotic behavior in the flow along a wedge modeled by the Blasius equation
VerfasserIn B. Basu, E. Foufoula-Georgiou, A. S. Sharma
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 18, no. 2 ; Nr. 18, no. 2 (2011-03-08), S.171-178
Datensatznummer 250013892
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-18-171-2011.pdf
 
Zusammenfassung
The Blasius equation describes the properties of steady-state two dimensional boundary layer forming over a semi-infinite plate parallel to a unidirectional flow field. The flow is governed by a modified Blasius equation when the surface is aligned along the flow. In this paper, we demonstrate using numerical solution, that as the wedge angle increases, bifurcation occurs in the nonlinear Blasius equation and the dynamics becomes chaotic leading to non-convergence of the solution once the angle exceeds a critical value of 22°. This critical value is found to be in agreement with experimental results showing the development of shock waves in the medium and also with analytical results showing multiple solutions for wedge angles exceeding a critical value. Finally, we provide a derivation of the equation governing the boundary layer flow for wedge angles exceeding the critical angle at the onset of chaos.
 
Teil von