dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel FEM and ANN combined approach for predicting pressure source parameters at Etna volcano
VerfasserIn A. Stefano, G. Currenti, C. Negro, L. Fortuna, G. Nunnari
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 17, no. 3 ; Nr. 17, no. 3 (2010-05-20), S.273-282
Datensatznummer 250013684
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-17-273-2010.pdf
 
Zusammenfassung
A hybrid approach for forward and inverse geophysical modeling, based on Artificial Neural Networks (ANN) and Finite Element Method (FEM), is proposed in order to properly identify the parameters of volcanic pressure sources from geophysical observations at ground surface. The neural network is trained and tested with a set of patterns obtained by the solutions of numerical models based on FEM. The geophysical changes caused by magmatic pressure sources were computed developing a 3-D FEM model with the aim to include the effects of topography and medium heterogeneities at Etna volcano. ANNs are used to interpolate the complex non linear relation between geophysical observations and source parameters both for forward and inverse modeling. The results show that the combination of neural networks and FEM is a powerful tool for a straightforward and accurate estimation of source parameters in volcanic regions.
 
Teil von