dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Proton transport model in the ionosphere. 2. Influence of magnetic mirroring and collisions on the angular redistribution in a proton beam
VerfasserIn M. Galand, J. Lilensten Link zu Wikipedia, W. Kofman, D. Lummerzheim
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 16, no. 10 ; Nr. 16, no. 10, S.1308-1321
Datensatznummer 250013499
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-16-1308-1998.pdf
 
Zusammenfassung
We investigate the influence of magnetic mirroring and elastic and inelastic scattering on the angular redistribution in a proton/hydrogen beam by using a transport code in comparison with observations. H-emission Doppler profiles viewed in the magnetic zenith exhibit a red-shifted component which is indicative of upward fluxes. In order to determine the origin of this red shift, we evaluate the influence of two angular redistribution sources which are included in our proton/hydrogen transport model. Even though it generates an upward flux, the redistribution due to magnetic mirroring effect is not sufficient to explain the red shift. On the other hand, the collisional angular scattering induces a much more significant red shift in the lower atmosphere. The red shift due to collisions is produced 
by <1 -keV protons and is so small as to require an instrumental bandwidth <0.2 nm. This explains the absence of measured upward proton/hydrogen fluxes in the Proton I rocket data because no useable data concerning protons <1 keV are available. At the same time, our model agrees with measured ground-based H-emission Doppler profiles and suggests that previously reported red shift observations were due mostly to instrumental bandwidth broadening of the profile. Our results suggest that Doppler profile measurements with higher spectral resolution may enable us to quantify better the angular scattering in proton aurora.

Key words. Auroral ionosphere · Particle precipitation
 
Teil von