dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Land cover and water yield: inference problems when comparing catchments with mixed land cover
VerfasserIn A. I. J. M. Dijk, J. L. Peña-Arancibia, L. A. Bruijnzeel
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 16, no. 9 ; Nr. 16, no. 9 (2012-09-26), S.3461-3473
Datensatznummer 250013483
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-16-3461-2012.pdf
 
Zusammenfassung
Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation) can affect mean catchment streamflow (Q). By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model). The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i) noise in land cover, precipitation and Q data; (ii) additional catchment climate characteristics more important than land cover; and (iii) covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.
 
Teil von