dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel HESS Opinions "More efforts and scientific rigour are needed to attribute trends in flood time series"
VerfasserIn B. Merz, S. Vorogushyn, S. Uhlemann, J. Delgado, Y. Hundecha
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 16, no. 5 ; Nr. 16, no. 5 (2012-05-11), S.1379-1387
Datensatznummer 250013294
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-16-1379-2012.pdf
 
Zusammenfassung
The question whether the magnitude and frequency of floods have changed due to climate change or other drivers of change is of high interest. The number of flood trend studies is rapidly rising. When changes are detected, many studies link the identified change to the underlying causes, i.e. they attribute the changes in flood behaviour to certain drivers of change. We propose a hypothesis testing framework for trend attribution which consists of essential ingredients for a sound attribution: evidence of consistency, evidence of inconsistency, and provision of confidence statement. Further, we evaluate the current state-of-the-art of flood trend attribution. We assess how selected recent studies approach the attribution problem, and to which extent their attribution statements seem defendable. In our opinion, the current state of flood trend attribution is poor. Attribution statements are mostly based on qualitative reasoning or even speculation. Typically, the focus of flood trend studies is the detection of change, i.e. the statistical analysis of time series, and attribution is regarded as an appendix: (1) flood time series are analysed by means of trend tests, (2) if a significant change is detected, a hypothesis on the cause of change is given, and (3) explanations or published studies are sought which support the hypothesis. We believe that we need a change in perspective and more scientific rigour: detection should be seen as an integral part of the more challenging attribution problem, and detection and attribution should be placed in a sound hypothesis testing framework.
 
Teil von