dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Determination of spatially varying Van der Burgh's coefficient from estuarine parameter to describe salt transport in an estuary
VerfasserIn D. C. Shaha, Y.-K. Cho
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 15, no. 5 ; Nr. 15, no. 5 (2011-05-02), S.1369-1377
Datensatznummer 250012774
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-15-1369-2011.pdf
 
Zusammenfassung
The estuarine parameter v is widely accepted as describing the relative contribution of the tide-driven and density-driven mixing mechanism of salt transport in estuaries. Van der Burgh's coefficient K is another parameter that also determines the relative strength of two mechanisms. However, a single value of K, which has been considered in previous studies, can not represent the spatial variation of these mechanisms in an estuary. In this study, the spatially varying K has been determined from the v value calculated using intensively observed longitudinal salinity transects of the Sumjin River Estuary with exponential shape. The spatially varying K describes the spatial variation of these mechanisms reasonably well and is independent of the river discharge downstream of the estuary where the strong tides cause well mixed conditions. However, K values increase upstream and are found to depend on the freshwater discharge, with suppressing vertical mixing. The K value has been scaled on the basis of the v value and ranges between 0 and 1. If K < 0.3, the up-estuary salt transport is entirely dominated by tide-driven mixing near the mouth. If 0.3 < K < 0.8, both tide-driven and density-driven mixing contribute to transporting salt in the central regimes. If K > 0.8, the salt transport is almost entirely by density-driven circulation in the upper most regimes. In addition, another K-based dispersion equation has been solved by using this spatially varying K. The spatially varying K demonstrates density-driven circulation more prominently at the location of strong salinity gradient compared with a single K value.
 
Teil von