dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel ENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction
VerfasserIn I. Ross, P. J. Valdes, S. Wiggins
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 15, no. 2 ; Nr. 15, no. 2 (2008-04-22), S.339-363
Datensatznummer 250012621
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-15-339-2008.pdf
 
Zusammenfassung
Linear dimensionality reduction techniques, notably principal component analysis, are widely used in climate data analysis as a means to aid in the interpretation of datasets of high dimensionality. These linear methods may not be appropriate for the analysis of data arising from nonlinear processes occurring in the climate system. Numerous techniques for nonlinear dimensionality reduction have been developed recently that may provide a potentially useful tool for the identification of low-dimensional manifolds in climate data sets arising from nonlinear dynamics. Here, we apply Isomap, one such technique, to the study of El Niño/Southern Oscillation variability in tropical Pacific sea surface temperatures, comparing observational data with simulations from a number of current coupled atmosphere-ocean general circulation models. We use Isomap to examine El Niño variability in the different datasets and assess the suitability of the Isomap approach for climate data analysis. We conclude that, for the application presented here, analysis using Isomap does not provide additional information beyond that already provided by principal component analysis.
 
Teil von