dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Low-frequency waves in the Earth's magnetosheath: present status
VerfasserIn S. J. Schwartz, D. Burgess, J. J. Moses
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 14, no. 11 ; Nr. 14, no. 11, S.1134-1150
Datensatznummer 250012465
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-14-1134-1996.pdf
 
Zusammenfassung
The terrestrial magnetosheath contains a rich variety of low-frequency (≲ proton gyrofrequency) fluctuations. Kinetic and fluid-like processes at the bow shock, within the magnetosheath plasma, and at the magnetopause all provide sources of wave energy. The dominance of kinetic features such as temperature anisotropies, coupled with the high-β conditions, complicates the wave dispersion and variety of instabilities to the point where mode identification is difficult. We review here the observed fluctuations and attempts to identify the dominant modes, along with the identification tools. Alfvén/ion-cyclotron and mirror modes are generated by T^/T>1 temperature anisotropies and dominate when the plasma β is low or high, respectively. Slow modes may also be present within a transition layer close to the subsolar magnetopause, although they are expected to suffer strong damping. All mode identifications are based on linearized theory in a homogeneous plasma and there are clear indications, in both the data and in numerical simulations, that nonlinearity and/or inhomogeneity modify even the most basic aspects of some modes. Additionally, the determination of the wave vector remains an outstanding observational issue which, perhaps, the Cluster mission will overcome.
 
Teil von