dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H)
VerfasserIn D. Wisser, B. M. Fekete, C. J. Vörösmarty, A. H. Schumann
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 14, no. 1 ; Nr. 14, no. 1 (2010-01-06), S.1-24
Datensatznummer 250012143
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-14-1-2010.pdf
 
Zusammenfassung
This paper presents a new reconstruction of the 20th century global hydrography using fully coupled water balance and transport model in a flexible modeling framework. The modeling framework allows a high level of configurability both in terms of input forcings and model structure. Spatial and temporal trends in hydrological cycle components are assessed under "pre-industrial" conditions (without modern-day human activities) and contemporary conditions (incorporating the effects of irrigation and reservoir operations). The two sets of simulations allow the isolation of the trends arising from variations in the climate input driver alone and from human interventions. The sensitivity of the results to variations in input data was tested by using three global gridded datasets of precipitation.

Our findings confirm that the expansion of irrigation and the construction of reservoirs has significantly and gradually impacted hydrological components in individual river basins. Variations in the volume of water entering the oceans annually, however, are governed primarily by variations in the climate signal alone with human activities playing a minor role. Globally, we do not find a significant trend in the terrestrial discharge over the last century.

The largest impact of human intervention on the hydrological cycle arises from the operation of reservoirs that drastically changes the seasonal pattern of horizontal water transport in the river system and thereby directly and indirectly affects a number of processes such as ability to decompose organic matter or the cycling of nutrients in the river system.
 
Teil von