dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Changes in annual maximum number of consecutive dry and wet days during 1961–2008 in Xinjiang, China
VerfasserIn Y. Zhang, F. Jiang, W. Wei, M. Liu, W. Wang, L. Bai, X. Li, S. Wang
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 12, no. 5 ; Nr. 12, no. 5 (2012-05-09), S.1353-1365
Datensatznummer 250010804
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-12-1353-2012.pdf
 
Zusammenfassung
Extreme precipitation events are major causes of severe floods and droughts worldwide. Therefore, scientific understanding of changing properties of extreme precipitation events is of great scientific and practical merit in the development of human mitigation of natural hazards, such as floods and droughts. Wetness and dryness variations during 1961–2008 in Xinjiang, a region of northwest China characterised by an arid climate, are thoroughly investigated using two extreme precipitation indices. These are annual maximum consecutive dry days (CDD) and annual maximum consecutive wet days (CWD), based on a daily precipitation dataset extracted from 51 meteorological stations across Xinjiang. As a result, we present spatial distributions of mean annual CDD and mean annual CWD and their trends within the study period. The results indicate that: (1) CDD maximize in the Taklimakan and Turban basins of southeast Xinjiang, while minima are found in the Tianshan Mountains and the Ili river valley of northwest Xinjiang. On the contrary, the longest CWD are observed in northwest Xinjiang and the shortest in the southeast part of the region. (2) On an annual basis, CWD temporal variability shows statistically positive trends and a rate of increase of 0.1d/10a. CDD temporal variability shows statistically negative trends and a rate of decrease of 1.7d/10a. (3) Goodness-of-fit analysis for three candidate probability distribution functions, generalised Pareto distribution (GPD), generalised extreme value (GEV) and Gumbel, in terms of probability behaviours of CDD and CWD, indicates that the GEV can well depict changes of CDD and CWD. (4) The CDD and CWD better describe wet and dry conditions than precipitation in the Xinjiang. The results pave the way for scientific evaluation of dryness/wetness variability under the influence of changing climate over the Xinjiang region.
 
Teil von