|
Titel |
Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM |
VerfasserIn |
D. J. L. Olivié, D. Cariolle, H. Teyssèdre, D. Salas, A. Voldoire, H. Clark, D. Saint-Martin, M. Michou, F. Karcher, Y. Balkanski, M. Gauss, O. Dessens, B. Koffi, R. Sausen |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 12, no. 3 ; Nr. 12, no. 3 (2012-02-07), S.1449-1480 |
Datensatznummer |
250010639
|
Publikation (Nr.) |
copernicus.org/acp-12-1449-2012.pdf |
|
|
|
Zusammenfassung |
For the period 1860–2100 (SRES scenario A1B for 2000–2100), the
impact of road transport, maritime shipping and aviation on climate
is studied using an Atmosphere Ocean General Circulation Model
(AOGCM). In addition to carbon dioxide (CO2) emissions from
these transport sectors, most of their non-CO2 emissions
are also taken into account, i.e. the forcing from ozone, methane, black
carbon, organic carbon, sulfate, CFC-12 and HFC-134a from air
conditioning systems in cars, and contrails.
For the
year 2000, the CO2 emissions from all sectors together induce a
global annual-mean surface air temperature increase of around
0.1 K. In 2100, the CO2 emissions from road transport induce
a global mean warming of 0.3 K, while shipping and aviation
each contribute 0.1 K. For road transport, the
non-CO2 impact is largest between 2000 and 2050 (of the order
of 0.1 K) becoming smaller at the end of the 21st century. The
non-CO2 impact from shipping is negative, reaching
−0.1 K between 2050 and 2100, while for aviation it is positive
and its estimate varies between 0 and 0.15 K
in 2100.
The largest changes in sea-level from thermal expansion in 2000 are
1.6 mm for the CO2 emissions from road
transport, and around −3 mm from the non-CO2
effects of
shipping.
In 2100, sea-level rises by 18 mm due to the CO2
emissions from road transport and by 4.6 mm due to shipping or aviation CO2 emissions.
Non-CO2 changes are of the order of 1 mm for road transport,
−6.6 mm for shipping, and the estimate for aviation varies between
−1.2 and 4.3 mm.
When focusing on the geographical distribution,
the non-CO2 impact from road transport and shipping on the
surface air temperature is only slightly stronger in northern than
in southern mid-latitudes, while the impact from aviation can be a
factor of 5 stronger in the northern than in the southern
hemisphere. Further it is observed that most of the impacts are
more pronounced at high latitudes, and that the non-CO2
emissions from aviation strongly impact the NAO index. The
impacts on the oceanic meridional overturning circulation and the Niño3.4
index are also quantified. |
|
|
Teil von |
|
|
|
|
|
|