dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Assessment of hydrological and seasonal controls over the nitrate flushing from a forested watershed using a data mining technique
VerfasserIn S. Rusjan, M. Mikoš Link zu Wikipedia
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 12, no. 2 ; Nr. 12, no. 2 (2008-04-01), S.645-656
Datensatznummer 250010583
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-12-645-2008.pdf
 
Zusammenfassung
A data mining, regression tree algorithm M5 was used to review the role of mutual hydrological and seasonal settings which control the streamwater nitrate flushing during hydrological events within a forested watershed in the southwestern part of Slovenia, characterized by distinctive flushing, almost torrential hydrological regime. The basis for the research was an extensive dataset of continuous, high frequency measurements of seasonal meteorological conditions, watershed hydrological responses and streamwater nitrate concentrations. The dataset contained 16 recorded hydrographs occurring in different seasonal and hydrological conditions. Based on predefined regression tree pruning criteria, a comprehensible regression tree model was obtained in the sense of the domain knowledge, which was able to adequately describe most of the streamwater nitrate concentration variations (RMSE=1.02 mg/l-N; r=0.91). The attributes which were found to be the most descriptive in the sense of streamwater nitrate concentrations were the antecedent precipitation index (API) and air temperatures in the preceding periods. The model was most successful in describing streamwater concentrations in the range 1–4 mg/l-N, covering large proportion of the dataset. The model performance was little worse in the periods of high streamwater nitrate concentration peaks during the summer hydrographs (up to 7 mg/l-N) but poor during the autumn hydrograph (up to 14 mg/l-N) related to highly variable hydrological conditions, which would require a less robust regression tree model based on the extended dataset.
 
Teil von