dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France
VerfasserIn E. J. Freney, K. Sellegri, F. Canonaco, J. Boulon, M. Hervo, R. Weigel, J. M. Pichon, A. Colomb, A. S. H. Prévôt, P. Laj
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 11, no. 24 ; Nr. 11, no. 24 (2011-12-21), S.13047-13059
Datensatznummer 250010293
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-11-13047-2011.pdf
 
Zusammenfassung
Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD) research station (1465 m) in autumn (September and October 2008), winter (February and March 2009), and summer (June 2010) using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA) and a semi-volatile organic aerosol particle (SV-OOA). Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning) during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL) or in the free troposphere (FT)/residual layer (RL). We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL/FT airmasses contain high mass fractions of sulphate and LV-OOA. This study provides unique insights into the effects of season and airmass variability on regional aerosol particles measured at an elevated site.
 
Teil von