|
Titel |
Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China |
VerfasserIn |
Y. Liu, J. Huang, G. Shi, T. Takamura, P. Khatri, J. Bi, J. Shi, T. Wang, X. Wang, B. Zhang |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 11, no. 22 ; Nr. 11, no. 22 (2011-11-17), S.11455-11463 |
Datensatznummer |
250010198
|
Publikation (Nr.) |
copernicus.org/acp-11-11455-2011.pdf |
|
|
|
Zusammenfassung |
The aerosol optical properties and their associated radiative effects are
derived from sky-radiometer and surface solar radiation data collected over
the Semi-Arid Climate and Environment Observatory of Lanzhou University
(SACOL) for the period of March to May (MAM) 2009. The result shows that the
seasonal mean aerosol optical depth (AOD) at 500 nm in MAM is 0.40. The
single scattering albedo (SSA) at 500 nm in MAM at SACOL fluctuates
significantly ranging from 0.82 to 0.98. The averaged value of SSA there for
background aerosol is 0.90 in MAM, while it is smaller (0.87) during the
dust event outbreak period. The smaller SSA can be interpreted as the result
of larger particles during dust events. The averaged asymmetry factor (ASY)
at 500 nm during dust event period is 0.73, which is larger than 0.70 of
background aerosols. The averaged shortwave radiative effects of the
aerosols during dust event period in MAM are 0.68, −70.02 and 70.70 W m−2,
respectively, at the top of the atmosphere (TOA), surface and in
the atmosphere. The aerosols heat the atmosphere during dust event period by
up to about 2 K day−1 (daily averaged), which is 60 % larger than the
heating (1.25 K day−1) of background aerosols. The significant heating
effect in the atmosphere of the aerosols during dust event is determined by
larger AOD and smaller SSA. |
|
|
Teil von |
|
|
|
|
|
|