dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Fragmentation vs. functionalization: chemical aging and organic aerosol formation
VerfasserIn H. J. Chacon-Madrid, N. M. Donahue
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 11, no. 20 ; Nr. 11, no. 20 (2011-10-25), S.10553-10563
Datensatznummer 250010143
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-11-10553-2011.pdf
 
Zusammenfassung
The transformation process that a carbon backbone undergoes in the atmosphere is complex and dynamic. Understanding all these changes for all the species in detail is impractical; however, choosing different molecules that resemble progressively higher stages of oxidation or aging and studying them can give us an insight into general characteristics and mechanisms. Here we determine secondary organic aerosol (SOA) mass yields of two sequences of molecules reacting with the OH radical at high NOx. Each sequence consists of species with similar vapor pressures, but a succession of oxidation states. The first sequence consists of n-pentadecane, n-tridecanal, 2-, 7-tridecanone, and pinonaldehyde. The second sequence consists of n-nonadecane, n-heptadecanal and cis-pinonic acid. Oxidized molecules tend to have lower relative SOA mass yields; however, oxidation state alone was not enough to predict how efficiently a molecule forms SOA. Certain functionalities are able to fragment more easily than others, and even the position of these functionalities on a molecule can have an effect. n-Alkanes tend to have the highest yields, and n-aldehydes the lowest. n-Ketones have slightly higher yields when the ketone moiety is located on the side of the molecule and not in the center. In general, oxidation products remain efficient SOA sources, though fragmentation makes them less effective than comparable alkanes.
 
Teil von