dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel High-resolution simulations of atmospheric CO2 over complex terrain – representing the Ochsenkopf mountain tall tower
VerfasserIn D. Pillai, C. Gerbig, R. Ahmadov, C. Rödenbeck, R. Kretschmer, T. Koch, R. Thompson, B. Neininger, J. V. Lavrié
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 11, no. 15 ; Nr. 11, no. 15 (2011-08-01), S.7445-7464
Datensatznummer 250009955
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-11-7445-2011.pdf
 
Zusammenfassung
Accurate simulation of the spatial and temporal variability of tracer mixing ratios over complex terrain is challenging, but essential in order to utilize measurements made in complex orography (e.g. mountain and coastal sites) in an atmospheric inverse framework to better estimate regional fluxes of these trace gases. This study investigates the ability of high-resolution modeling tools to simulate meteorological and CO2 fields around Ochsenkopf tall tower, situated in Fichtelgebirge mountain range- Germany (1022 m a.s.l.; 50°1′48" N, 11°48′30" E). We used tower measurements made at different heights for different seasons together with the measurements from an aircraft campaign. Two tracer transport models – WRF (Eulerian based) and STILT (Lagrangian based), both with a 2 km horizontal resolution – are used together with the satellite-based biospheric model VPRM to simulate the distribution of atmospheric CO2 concentration over Ochsenkopf. The results suggest that the high-resolution models can capture diurnal, seasonal and synoptic variability of observed mixing ratios much better than coarse global models. The effects of mesoscale transports such as mountain-valley circulations and mountain-wave activities on atmospheric CO2 distributions are reproduced remarkably well in the high-resolution models. With this study, we emphasize the potential of using high-resolution models in the context of inverse modeling frameworks to utilize measurements provided from mountain or complex terrain sites.
 
Teil von