|
Titel |
Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations |
VerfasserIn |
M. R. Russo, V. Marecal, C. R. Hoyle, J. Arteta, C. Chemel, M. P. Chipperfield, O. Dessens, W. Feng, J. S. Hosking, P. J. Telford, O. Wild, X. Yang, J. A. Pyle |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 11, no. 6 ; Nr. 11, no. 6 (2011-03-25), S.2765-2786 |
Datensatznummer |
250009519
|
Publikation (Nr.) |
copernicus.org/acp-11-2765-2011.pdf |
|
|
|
Zusammenfassung |
Fast convective transport in the tropics can efficiently redistribute
water vapour and pollutants up to the upper troposphere.
In this study we compare tropical convection characteristics for the
year 2005 in a range of atmospheric models, including
numerical weather prediction (NWP) models, chemistry transport
models (CTMs), and chemistry-climate models (CCMs).
The model runs have been performed within the framework
of the SCOUT-O3 (Stratospheric-Climate Links with
Emphasis on the Upper Troposphere and Lower Stratosphere) project.
The characteristics of tropical convection,
such as seasonal cycle, land/sea contrast and vertical
extent, are analysed using satellite observations
as a benchmark for model simulations. The observational
datasets used in this work comprise precipitation rates, outgoing
longwave radiation, cloud-top pressure, and water vapour from a
number of independent sources, including ERA-Interim analyses.
Most models are generally able to
reproduce the seasonal cycle and strength of precipitation for
continental regions but show larger discrepancies with observations for the Maritime
Continent region.
The frequency distribution of high clouds from models and observations
is calculated using highly
temporally-resolved (up to 3-hourly) cloud top data. The percentage
of clouds above 15 km varies significantly between the models.
Vertical profiles of water vapour in the upper troposphere-lower
stratosphere (UTLS) show large differences between the models which can only be
partly attributed to temperature differences.
If a convective plume reaches above the level of zero net
radiative heating, which is estimated to be ~15 km
in the tropics, the air detrained from it can be transported upwards by
radiative heating into the lower stratosphere.
In this context, we discuss the role of tropical convection as a
precursor for the transport of short-lived species into
the lower stratosphere. |
|
|
Teil von |
|
|
|
|
|
|