|
Titel |
Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events |
VerfasserIn |
A. J. G. Baumgaertner, P. Jöckel, H. Riede, G. Stiller, B. Funke |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 10, no. 15 ; Nr. 10, no. 15 (2010-08-06), S.7285-7302 |
Datensatznummer |
250008686
|
Publikation (Nr.) |
copernicus.org/acp-10-7285-2010.pdf |
|
|
|
Zusammenfassung |
The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC)
has been extended by processes that parameterize particle precipitation.
Several types of particle precipitation that directly affect NOy
and HOx concentrations in the middle atmosphere are accounted for
and discussed in a series of papers. In part 1, the EMAC parameterization for
NOx produced in the upper atmosphere by low-energy electrons is
presented. Here, we discuss production of NOy and HOx
associated with Solar Proton Events (SPEs). A submodel that parameterizes the
effects of precipitating protons, based on flux measurements by instruments
on the IMP or GOES satellites, was added to the EMAC model. Production and
transport of NOy and HOx, as well as effects on other
chemical species and dynamics during the 2003 Halloween SPEs are presented.
Comparisons with MIPAS/ENVISAT measurements of a number of species affected by
the SPE are shown and discussed. There is good agreement for NO2, but a
severe disagreement is found for N2O similar to other studies.
We discuss the effects of an altitude dependence of the N/NO production rate
on the N2O and NOy changes during the SPE. This yields a modified
parameterization that shows mostly good agreement between MIPAS and model results for
NO2, N2O, O3, and HOCl. With the ability of EMAC to relax the model
meteorology to observations, accurate assessment of total column ozone loss
is also possible, yielding a loss of approximately 10 DU at the end of November.
Discrepancies remain for HNO3, N2O5, and ClONO2, which are likely a
consequence from the missing cluster ion chemistry and ion-ion recombination in the EMAC model as well as
known issues with the model's NOy partitioning. |
|
|
Teil von |
|
|
|
|
|
|