dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Variability of carbon monoxide and carbon dioxide apparent quantum yield spectra in three coastal estuaries of the South Atlantic Bight
VerfasserIn H. E. Reader, W. L. Miller
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 9, no. 11 ; Nr. 9, no. 11 (2012-11-06), S.4279-4294
Datensatznummer 250007375
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-9-4279-2012.pdf
 
Zusammenfassung
The photochemical oxidation of oceanic dissolved organic carbon (DOC) to carbon monoxide (CO) and carbon dioxide (CO2) has been estimated to be a significant process with global photoproduction transforming petagrams of DOC to inorganic carbon annually. To further quantify the importance of these two photoproducts in coastal DOC cycling, 38 paired apparent quantum yield (AQY) spectra for CO and CO2 were determined at three locations along the coast of Georgia, USA over the course of one year. The AQY spectra for CO2 were considerably more varied than CO. CO AQY spectra exhibited a seasonal shift in spectrally integrated (260 nm–490 nm) AQY from higher efficiencies in the autumn to less efficient photoproduction in the summer. While full-spectrum photoproduction rates for both products showed positive correlation with pre-irradiation UV-B sample absorption (i.e. chromophoric dissolved organic matter, CDOM) as expected, we found no correlation between AQY and CDOM for either product at any site. Molecular size, approximated with pre-irradiation spectral slope coefficients, and aromatic content, approximated by the specific ultraviolet absorption of the pre-irradiated samples, were also not correlated with AQY in either data set. The ratios of CO2 to CO photoproduction determined using both an AQY model and direct production comparisons were 23.2 ± 12.5 and 22.5 ± 9.0, respectively. Combined, both products represent a loss of 2.9 to 3.2% of the DOC delivered to the estuaries and inner shelf of the South Atlantic Bight yearly, and 6.4 to 7.3% of the total annual degassing of CO2 to the atmosphere. This result suggests that direct photochemical production of CO and CO2 is a small, yet significant contributor to both DOC cycling and CO2 gas exchange in this coastal system.
 
Teil von