dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modelling the contribution of short-range atmospheric and hydrological transfers to nitrogen fluxes, budgets and indirect emissions in rural landscapes
VerfasserIn J.-L. Drouet, S. Duretz, P. Durand, P. Cellier
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 9, no. 5 ; Nr. 9, no. 5 (2012-05-08), S.1647-1660
Datensatznummer 250007021
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-9-1647-2012.pdf
 
Zusammenfassung
Spatial interactions within a landscape may lead to large inputs of reactive nitrogen (Nr) transferred from cultivated areas and farms to oligotrophic ecosystems and induce environmental threats such as acidification, nitric pollution or eutrophication of protected areas. The paper presents a new methodology to estimate Nr fluxes at the landscape scale by taking into account spatial interactions between landscape elements. This methodology includes estimates of indirect Nr emissions due to short-range atmospheric and hydrological transfers. We used the NitroScape model which integrates processes of Nr transformation and short-range transfer in a dynamic and spatially distributed way to simulate Nr fluxes and budgets at the landscape scale. Four configurations of NitroScape were implemented by taking into account or not the atmospheric, hydrological or both pathways of Nr transfer. We simulated Nr fluxes, especially direct and indirect Nr emissions, within a test landscape including pig farms, croplands and unmanaged ecosystems. Simulation results showed the ability of NitroScape to simulate patterns of Nr emissions and recapture for each landscape element and the whole landscape. NitroScape made it possible to quantify the contribution of both atmospheric and hydrological transfers to Nr fluxes, budgets and indirect Nr emissions. For instance, indirect N2O emissions were estimated at around 21% of the total N2O emissions. They varied within the landscape according to land use, meteorological and soil conditions as well as topography. This first attempt proved that the NitroScape model is a useful tool to estimate the effect of spatial interactions on Nr fluxes and budgets as well as indirect Nr emissions within landscapes. Our approach needs to be further tested by applying NitroScape to several spatial arrangements of agro-ecosystems within the landscape and to real and larger landscapes.
 
Teil von