dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Neural-network-based prediction techniques for single station modeling and regional mapping of the foF2 and M(3000)F2 ionospheric characteristics
VerfasserIn T. D. Xenos
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 9, no. 5/6 ; Nr. 9, no. 5/6, S.477-486
Datensatznummer 250006562
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-9-477-2002.pdf
 
Zusammenfassung
In this work, Neural-Network-based single-station hourly daily foF2 and M(3000)F2 modelling of 15 European ionospheric stations is investigated. The data used are neural networks and hourly daily values from the period 1964- 1988 for training the neural networks and from the period 1989-1994 for checking the prediction accuracy. Two types of models are presented for the F2-layer critical frequency prediction and two for the propagation factor M(3000)F2. The first foF2 model employs the E-layer local noon calculated daily critical frequency (foE12) and the local noon F2- layer critical frequency of the previous day. The second foF2 model, which introduces a new regional mapping technique, employs the Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12), and the previous day F2-layer critical frequency measured at Juliusruh at noon. The first M(3000)F2 model employs the E-layer local noon calculated daily critical frequency (foE12), its ± 3 h deviations and the local noon cosine of the solar zenith angle (cos c12). The second model, which introduces a new M(3000)F2 mapping technique, employs Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12), and the previous day F2-layer critical frequency measured at Juliusruh at noon.
 
Teil von