dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea)
VerfasserIn L. Pastor, C. Cathalot, B. Deflandre, E. Viollier, K. Soetaert, F. J. R. Meysman, C. Ulses, E. Metzger, C. Rabouille
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 8, no. 5 ; Nr. 8, no. 5 (2011-05-27), S.1351-1366
Datensatznummer 250005826
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-8-1351-2011.pdf
 
Zusammenfassung
In situ oxygen microprofiles, sediment organic carbon content, and pore-water concentrations of nitrate, ammonium, iron, manganese, and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1) the organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1); (2) the burial efficiency (burial/input ratio) in the Rhône prodelta (within 3 km of the river outlet) can be up to 80 %, and decreases to ~20 % on the adjacent continental shelf 10–15 km further offshore; (3) there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates; (4) diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97 %) and buried in the sediment, which leads to (5) a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River-dominated Ocean Margins (RiOMar) environments.
 
Teil von