dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol
VerfasserIn A. Asa-Awuku, A. P. Sullivan, C. J. Hennigan, R. J. Weber, A. Nenes
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 8, no. 4 ; Nr. 8, no. 4 (2008-02-18), S.799-812
Datensatznummer 250005668
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-8-799-2008.pdf
 
Zusammenfassung
In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH4)2SO4) in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH4)2SO4. From our analysis, average thermodynamic properties (i.e, molar volume) are determined for samples using our newly developed Köhler Theory Analysis (KTA) method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol−1 and 780±231 g mol−1, respectively. KTA also suggests that the relative proportion (in moles) of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.
 
Teil von