|
Titel |
A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London |
VerfasserIn |
S. Rodríguez, R. Dingenen, J.-P. Putaud, A. Dell'Acqua, J. Pey, X. Querol, A. Alastuey, S. Chenery, K.-F. Ho, R. Harrison, R. Tardivo, B. Scarnato, V. Gemelli |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 7, no. 9 ; Nr. 7, no. 9 (2007-05-03), S.2217-2232 |
Datensatznummer |
250004946
|
Publikation (Nr.) |
copernicus.org/acp-7-2217-2007.pdf |
|
|
|
Zusammenfassung |
A physicochemical characterization, including aerosol number size
distribution, chemical composition and mass concentrations, of the urban
fine aerosol captured in MILAN, BARCELONA and LONDON is presented in this
article. The objective is to obtain a comprehensive picture of the
microphysical processes involved in aerosol dynamics during the: 1) regular
evolution of the urban aerosol (daily, weekly and seasonal basis) and in the
day-to-day variations (from clean-air to pollution-events), and 2) the link
between "aerosol chemistry and mass concentrations" with the "number size
distribution".
The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation
with the number concentration of >100 nm particles N>100 (nm) ("accumulation mode particles")
which only account for <20% of the total number concentration N of fine
aerosols; but do not correlate with the number of <100 nm particles ("ultrafine particles"),
which accounts for >80% of fine particles number concentration.
Organic matter and black-carbon are the only aerosol components showing a
significant correlation with the ultrafine particles, attributed to vehicles
exhausts emissions; whereas ammonium-nitrate, ammonium-sulphate and also
organic matter and black-carbon correlate with N>100 (nm) and attributed to
condensation mechanisms, other particle growth processes and some primary
emissions. Time series of the aerosol DpN diameter (dN/dlogD mode), mass
PM2.5 concentrations and number N>100 (nm) concentrations exhibit
correlated day-to-day variations, which point to a significant involvement
of condensation of semi-volatile compounds during urban pollution events.
This agrees with the observation that ammonium-nitrate is the component
exhibiting the highest increases from mid-to-high pollution episodes, when
the highest DpN increases are observed. The results indicates that "fine
PM2.5 particles urban pollution events" tend to occur when condensation
processes have made particles grow large enough to produce significant
number concentrations of N>100 (nm) ("accumulation mode particles"). In
contrast, because the low contribution of ultrafine particles to the fine
aerosol mass concentrations, high "ultrafine particles N<100(nm) events"
frequently occurs under low PM2.5 conditions. The results of this study
demonstrate that vehicles exhausts emissions are strongly involved in this
ultrafine particles aerosol pollution. |
|
|
Teil von |
|
|
|
|
|
|