dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The trophic biology of the holothurian Molpadia musculus: implications for organic matter cycling and ecosystem functioning in a deep submarine canyon
VerfasserIn T. Amaro, S. Bianchelli, D. S. M. Billett, M. R. Cunha, A. Pusceddu, R. Danovaro
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 7, no. 8 ; Nr. 7, no. 8 (2010-08-16), S.2419-2432
Datensatznummer 250004930
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-7-2419-2010.pdf
 
Zusammenfassung
Megafaunal organisms play a key role in ecosystem functioning in the deep-sea through bioturbation, bioirrigation and organic matter cycling. At 3500 m water depth in the Nazaré Canyon, NE Atlantic, very high abundances of the infaunal holothurian Molpadia musculus were observed. To quantify the role of M. musculus in sediment cycling, sediment samples and holothurians were collected using an ROV and in situ experiments were conducted with incubation chambers. The biochemical composition of the sediment (in terms of proteins, carbohydrates and lipids), the holothurians' gut contents and holothurians' faecal material were analysed. In the sediments, proteins were the dominant organic compound, followed by carbohydrates and lipids. In the holothurian's gut contents, protein concentrations were higher than the other compounds, decreasing significantly as the material passed through the digestive tract. Approximately 33±1% of the proteins were digested by the time sediment reached the mid gut, with a total digestion rate equal to 67±1%. Carbohydrates and lipids were ingested in smaller amounts and digested with lower efficiencies (23±11% and 50±11%, respectively). As a result, the biopolymeric C digestion rate was on average 62±3%. We estimated that the population of M. musculus could remove approximately 0.49±0.13 g biopolymeric C and 0.13±0.03 g N m−2 d−1 from the sediments. These results suggest that M. musculus plays a key role in the benthic tropho-dynamics and biogeochemical processes in the Nazaré Canyon.
 
Teil von