dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology
VerfasserIn C. Sturm, Q. Zhang, D. Noone
Medientyp Artikel
Sprache Englisch
ISSN 1814-9324
Digitales Dokument URL
Erschienen In: Climate of the Past ; 6, no. 1 ; Nr. 6, no. 1 (2010-02-26), S.115-129
Datensatznummer 250003330
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/cp-6-115-2010.pdf
 
Zusammenfassung
Stable water isotopes have been measured in a wide range of climate archives, with the purpose of reconstructing regional climate variations. Yet the common assumption that the isotopic signal is a direct indicator of temperature proves to be misleading under certain circumstances, since its relationship with temperature also depends on e.g. atmospheric circulation and precipitation seasonality. Here we introduce the principles, benefits and caveats of using climate models with embedded water isotopes as a support for the interpretation of isotopic climate archives. A short overview of the limitations of empirical calibrations of isotopic proxy records is presented. In some cases, the underlying hypotheses are not fulfilled and the calibration contradicts the physical interpretation of isotopic fractionation. The simulation of climate and its associated isotopic signal, despite difficulties related to downscaling and intrinsic atmospheric variability, can provide a "transfer function" between the isotopic signal and the considered climate variable. The relationship between modelled temperature and isotopic signal is analysed under present-day, pre-industrial and mid-Holocene conditions. The linear regression relationship is statistically more significant for precipitation-weighted annual temperature than mean annual temperature, yet the regression slope varies greatly between the time-slice experiments. Temperature reconstructions that do not account for the slope variations will in this case underestimate the low-frequency variability and overestimate high-frequency variability from the isotopic proxy record. The spatial variability of the simulated δ18O-temperature slope further indicates that the isotopic signal is primarily controlled by synoptic atmospheric circulation rather than local temperature.
 
Teil von