dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The mean meridional circulation and midlatitude ozone buildup
VerfasserIn G. Nikulin, A. Karpechko
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 5, no. 11 ; Nr. 5, no. 11 (2005-11-24), S.3159-3172
Datensatznummer 250003157
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-5-3159-2005.pdf
 
Zusammenfassung
The wintertime ozone buildup over the Northern Hemisphere (NH) midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002). The ozone buildup begins locally in October with positive total ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. The local onset of the buildup in October is not evident in zonal mean ozone tendency, which is close to zero. From November to March, zonal mean total ozone tendency (50°–60° N) shows a strong correlation (|r|=0.7) with several zonal mean parameters associated to the mean meridional circulation, namely: eddy heat flux, temperature tendency, the vertical residual velocity and the residual streamfunction. At the same time, on the latitude-altitude cross section, correlation patterns between ozone tendency and widely used eddy heat flux are not uniform during winter. The strongest correlations are located equatorward (almost throughout the stratosphere) or poleward (only in the lower stratosphere) of the edge of the polar vortex. Such distribution may depend on the existence of the midlatitude and polar waveguides which defined refraction of upward propagating waves from the troposphere either to the midlatitude stratosphere or to the polar stratosphere. As a consequence of the nonuniform correlation patterns, heat flux averaged over the common region 45°–75° N, 100 hPa is not always an optimum proxy for statistical models describing total ozone variability in midlatitudes. Other parameters approximating the strength of the mean meridional circulation have more uniform and stable correlation patterns with ozone tendency during winter. We show that the NH midlatitude ozone buildup has a stable statistical relationship with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.
 
Teil von