dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia
VerfasserIn H. Irie, K. F. Boersma, Y. Kanaya, H. Takashima, X. Pan, Z. F. Wang
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 5, no. 10 ; Nr. 5, no. 10 (2012-10-16), S.2403-2411
Datensatznummer 250003122
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-5-2403-2012.pdf
 
Zusammenfassung
For the intercomparison of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data from three different satellite sensors (SCIAMACHY, OMI, and GOME-2), we use a common standard to quantitatively evaluate the biases for the respective data sets. As the standard, a regression analysis using a single set of collocated ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations at several sites in Japan and China from 2006–2011 is adopted. Examinations of various spatial coincidence criteria indicates that the slope of the regression line can be influenced by the spatial distribution of NO2 over the area considered. While the slope varies systematically with the distance between the MAX-DOAS and satellite observation points around Tokyo in Japan, such a systematic dependence is not clearly seen and correlation coefficients are generally higher in comparisons at sites in China. On the basis of these results, we focus mainly on comparisons over China and estimate the biases in SCIAMACHY, OMI, and GOME-2 data (TM4NO2A and DOMINO version 2 products) against the MAX-DOAS observations to be −5 ± 14%, −10 ± 14%, and +1 ± 14%, respectively, which are all small and insignificant. We suggest that these small biases now allow for analyses combining these satellite data for air quality studies, which are more systematic and quantitative than previously possible.
 
Teil von