dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the Western Mediterranean
VerfasserIn M. Zampieri, P. Malguzzi, A. Buzzi
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 5, no. 4 ; Nr. 5, no. 4 (2005-08-03), S.603-612
Datensatznummer 250002655
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-5-603-2005.pdf
 
Zusammenfassung
The "Montserrat-2000" severe flash flood event which occurred over Catalonia on 9 and 10 June 2000 is analyzed. Strong precipitation was generated by a mesoscale convective system associated with the development of a cyclone. The location of heavy precipitation depends on the position of the cyclone, which, in turn, is found to be very sensitive to various model characteristics and initial conditions.

Numerical simulations of this case study using the hydrostatic BOLAM and the non-hydrostatic MOLOCH models are performed in order to test the effects of different formulations of the boundary layer parameterization: a modified version of the Louis (order 1) model and a custom version of the E-ℓ (order 1.5) model. Both of them require a diagnostic formulation of the mixing length, but the use of the turbulent kinetic energy equation in the E-ℓ model allows to represent turbulence history and non-locality effects and to formulate a more physically based mixing length.

The impact of the two schemes is different in the two models. The hydrostatic model, run at 1/5 degree resolution, is less sensitive, but the quantitative precipitation forecast is in any case unsatisfactory in terms of localization and amount. Conversely, the non-hydrostatic model, run at 1/50 degree resolution, is capable of realistically simulate timing, position and amount of precipitation, with the apparently superior results obtained with the E-ℓ parameterization model.

 
Teil von