dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Hamiltonian approach to the derivation of evolution equations for wave trains in weakly unstable media
VerfasserIn N. N. Romanova
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 5, no. 4 ; Nr. 5, no. 4, S.241-253
Datensatznummer 250002641
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-5-241-1998.pdf
 
Zusammenfassung
The dynamics of weakly nonlinear wave trains in unstable media is studied. This dynamics is investigated in the framework of a broad class of dynamical systems having a Hamiltonian structure. Two different types of instability are considered. The first one is the instability in a weakly supercritical media. The simplest example of instability of this type is the Kelvin-Helmholtz instability. The second one is the instability due to a weak linear coupling of modes of different nature. The simplest example of a geophysical system where the instability of this and only of this type takes place is the three-layer model of a stratified shear flow with a continuous velocity profile. For both types of instability we obtain nonlinear evolution equations describing the dynamics of wave trains having an unstable spectral interval of wavenumbers. The transformation to appropriate canonical variables turns out to be different for each case, and equations we obtained are different for the two types of instability we considered. Also obtained are evolution equations governing the dynamics of wave trains in weakly subcritical media and in media where modes are coupled in a stable way. Presented results do not depend on a specific physical nature of a medium and refer to a broad class of dynamical systems having the Hamiltonian structure of a special form.
 
Teil von